RESEARCH ARTICLE

Peculiar synthesis and photoluminescence characterization of series of $(Ca_{2-X})PO_4Cl:xEu^{2+}$ phosphor

C. D. Mungmode¹ · D. H. Gahane² · C. V. Chanmal³ · B. V. Tupte⁴ · M. M. Bhave² · S. V. Moharil⁵

Received: 7 December 2021 / Accepted: 20 April 2022 / Published online: 16 May 2022 © The Author(s), under exclusive licence to The Optical Society of India 2022

Abstract This work describe the synthesis of a series of Europium ion (Eu²⁺) activated calcium chlorophosphate $Ca_{2-x}PO_4Cl:xEu^{2+}$, x = 0.01, 0.015, 0.02, 0.05 and 0.10) phosphors annealed at various temperature. This phosphor is synthesized by wet chemical synthesis. This synthesis method is more efficient than conventional solid state synthesis. The formation of crystalline structure of Ca₂PO₄Cl of the synthesized phosphor is confirmed by X-ray diffraction analysis. The photoluminescence characterization is carried out and optimal Eu²⁺ concentration is determined as 2 mol.%. The excitation spectra of Ca₂PO₄Cl:Eu²⁺ phosphor shows prominent excitation band around 380 nm. Upon excitation at 385 nm, the phosphor emits light in the range 400 nm to 520 nm peaking at 452 nm. The Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of the phosphor are calculated to be Cx = 0.154 and $C_y = 0.022$. The PL emission of the prepared phosphor is more intense than commercial BaMgAl₁₀O₁₇:Eu²⁺ BAM phosphor. This phosphor may be a candidate for the application in solid state lighting as blue emitting component.

C. D. Mungmode mungmode.prashant@gmail.com

- ¹ Department of Physics, M. G. Arts, Science & Late N. P. Commerce College, Armori 441208, India
- ² Department of Physics, N. H. College, Bramhapuri 441206, India
- ³ Department of Physics, D. B. F. Dayanand College of Arts & Science, Solapur 413002, India
- ⁴ Department of Physics, S.G.M. College, Kurkheda 441209, India
- ⁵ Department of Physics, R.T.M. Nagpur University, Nagpur 440033, India

Keywords Photoluminescence \cdot Ca₂PO₄Cl \cdot Blue emitting phosphor \cdot Wet chemical synthesis

Introduction

New age lighting technology, i.e., Solid State Lighting (SSL) has evolved over the years. This technology has been replacing conventional lighting technology due to high energy efficiency, longer lifetime, compactness and cost effectiveness as compared to conventional lighting [1, 2]. It is based on semiconductor LEDs (light emitting diodes), OLED (organic light emitting diodes) for getting white light. Initially, LEDs found applications in simple displays and indicators but by the development of InGaN material system by Amano in the late 1980s [3], LEDs have been used to produce white lighting.

White light can be produced by the combination of red, green and blue phosphors which are coupled to near ultraviolet (n-UV) LED (360–420 nm). The commercially available blue phosphor for near-UV LEDs is BaMgAl₁₀O₁₇:Eu²⁺ (BAM) that has been intensively studied [4, 5]. However, thermal degradation as well as UV damage are two major problems with BAM:Eu²⁺ which lead to wavelength shift and loss of intensity [6, 7].

Efficiency of red and green phosphors is good but the development of highly efficient blue phosphors for their various applications is still needed. Divalent europium (Eu²⁺) activated phosphate, halo-phosphate and silicate based compounds are the most promising blue emitting phosphors. Greenblatt et al. [8] reported calcium chlorophosphate Ca₂PO₄Cl (CAP) for the first time. In the 1990s, Blasse et al. reported the photoluminescence (PL) at 4.2 K and thermoluminescence properties of Ca₂PO₄Cl:Eu²⁺ [9]. The luminescence properties, thermal stability and applications

in n-UV LED of blue-emitting $Ca_2PO_4CI:Eu^{2+}$ (CAP:Eu²⁺) phosphor is reported by Yi-Chen Chiu et al. [10]. Till now, many Eu²⁺ activated phosphate and halo-phosphate phosphors are reported [9–25]. Almost all halo-phosphates have been synthesized by solid state reaction route which requires very high temperature and longer time. This discrepancy prompted the authors to look for alternative method for the synthesis of such phosphors which would be easy, needs low temperature and less time consuming than solid state reaction method. Recently, M₅(PO₄)₃Cl (M=Ca, Sr, Ba) phosphors were synthesized by a simple wet chemical method are reported [26, 27].

In the present work, we synthesized a series of (Ca_{2-X}) PO₄Cl:xEu²⁺ phosphors using wet chemical method and their luminescent properties are discussed in detail. In the context of the excitation band, excellent luminescent properties and cost effective manufacturing, Ca₂PO₄Cl:Eu²⁺ phosphor is a potential candidate for application in n-UV white LEDs.

Experimental

In the present study samples are prepared by wet chemical method. Starting materials used for the preparation of samples are CaCO₃, CaHPO₄, Eu₂O₃ and HCl. Merk manufactured AR grade materials are used for the synthesis. The samples were prepared by dissolving stoichiometric amount of starting materials in concentrated HCl having molarity 11.32 M (35% assay) for different concentration of Eu. This solution was then heated on magnetic stirrer to boil off excess amount of acid and to get dry compound. This whole process was carried out in a glass distillation assembly which consists of a glass flask placed on hot plate with magnetic stirrer. One neck of the flask is connected to condenser unit, so that the evaporated acid can be cooled and collected in a receiving vessel at the lower end.

The resulting compound was crushed to get fine powder which is further dried at 475 K for 2 h in air, and again crushed to get fine powder. The resulting powder then annealed for 1 h at five different temperatures i.e. 723 K, 773 K, 1023 K, 1073 K and 1173 K under reducing atmosphere provided by burning activated charcoal as described by Gahane et al. [27, 28]. We found highest PL intensity at 1073 K. This process reduced the activator to divalent state. This treatment was found sufficient to yield bright phosphor exhibiting intense Eu²⁺ emission. In this process no nitrogen/H₂ circulation was needed.

These heat-treated samples were quickly sandwiched between quartz plates and transferred to photoluminescence (PL) cell for characterization. The photoluminescence spectra are recorded in the range of 220–700 nm on a Hitachi F-4000 Spectro-fluorimeter under resolution of 1.5 nm.

Fig. 1 XRD-pattern of Ca₂PO₄Cl phosphor

Fig. 2 Unit Cell of Ca₂PO₄Cl with coordination of O–Ca–Cl atoms

The phase purity of the samples was confirmed by powder X-ray diffraction (XRD) analysis with Philips PAN analytical X'pert Pro X-ray diffractometer.

Results and discussion

The XRD pattern of Ca₂PO₄CI:0.05Eu²⁺ is shown in Fig. 1. The typical XRD pattern obtained is consistent with JCPDS file no 19-0247 that suggests the formation of a crystalline Ca₂PO₄Cl matrix. These results indicate that doping of Eu²⁺ does not generate any impurity phase. Ca₂PO₄Cl has orthorhombic crystal structure with space group of *Pbcm*. It has four formula units per unit cell. The dimensions of the unit cell are $a = 6.1850 \text{ A}^\circ$, $b = 6.983 \text{ A}^\circ$, and $c = 10.816 \text{ A}^\circ$ [10]. Ca₂PO₄Cl has the spodiosite structure [8, 29]. In this structure two different crystallographic sites are available for the divalent cation, one with site symmetry C₂ and another with site symmetry C_s. On both sites the cation is coordinated by six oxygen ions and two chlorine ions (Fig. 2). The difference between the two sites is their size. For the larger C_s site the average Ca–O distance is 2.50 A° and the average Ca–Cl distance is 2.89 A°. For the smaller C₂ site these distances are 2.46 A° and 2.81 A°, respectively [9]. The ionic radius of Eu²⁺ (r=1.25 A° when coordination no=8) is close to that of Ca²⁺ (r=1.120 A° when coordination no=8). Since the four-coordinated P⁵⁺ (r=0.17 A°) site is too small for Eu²⁺ to occupy, the Eu²⁺ was supposed to occupy the Ca²⁺ sites due to size considerations [10, 30].

Eu²⁺ emission and excitation arises from the transition between 4f⁶5d¹ configuration and the ⁸S_{7/2} state of the 4f⁷ configuration. The most commonly observed emission is the dipole and spin allowed d–f emission starting from the relaxed 4f⁶(⁷F₀)5d¹ level. Due to the allowed nature of the transition, d–f emission is intense. In some cases, especially in certain fluorides, the position of the band corresponding to the f–d transition lies above f–f levels. The line emission corresponding to the ⁶P_j→ ⁸S_{7/2} transitions of the 4f⁷ configuration is then observed [31–34].

The photoluminescence spectra of $Ca_2PO_4Cl:Eu^{2+}$ annealed at different temperatures ranging between 723 and 1073 K were studied and maximum emission intensity was observed at 1073 K as shown in Figs. 3 and 4.

Figures 5 and 6 shows PL intensities of $(Ca_{1-x}Eu_x)_2PO_4Cl$ as a function of doped Eu²⁺ content annealed at 1073 K. Maximum and very intense emission peak was observed for 2 mol.% concentration. The PL intensity was found to decline when the concentration of Eu²⁺ exceeds 2 mol.% showing concentration quenching. For 2 mol.% of Eu²⁺ annealed at 1073 K, the excitation spectrum consists of several overlapping bands near the UV region 350–410 nm; the one around 360 nm being the most prominent. The variation of emission intensity with Eu²⁺ concentration in host material is shown in Fig. 7.

Very intense emission is observed with a maximum around 452 nm under 385 nm excitation. The emission

Fig. 3 PL spectra for $Ca_2PO_4Cl:Eu^{2+}(1 \text{ mol.}\%)$ **a–c** emission in $Ca_2PO_4Cl:Eu^{2+}$ for 380 nm excitation at various reducing temperature. Temperature in °K: **a** 723, **b** 1173, **c** 1073 and **d**, **e** and **f** excitation for 450 nm emission at various reducing temperature 723 °K, 1173 °K and 1073 °K, respectively

Fig. 4 Variation of PL emission intensity with Annealing Temperature

wavelength of $Ca_2PO_4Cl:Eu^{2+}$ (452 nm) is close to that of $BaMgAl_{10}O_{17}$: Eu^{2+} (BAM) (453 nm) as shown in Fig. 8. However, the emission intensity of $Ca_2PO_4Cl:Eu^{2+}$ was found to be higher than BAM. The full width at half maximum (FWHM) of CAP:Eu²⁺ is about 32.2 nm which is much narrower than BAM (61 nm) reported in the literature [10].

Color quality of the phosphor is described in terms of color rendering index. Figure 9 Shows the Commission Internationale de I'Eclairage (CIE) 1931 chromaticity coordinates of prepared Ca₂PO₄Cl:2%Eu²⁺ shown by solid red dot. The chromaticity coordinates are Cx = 0.154 and Cy = 0.022. CIE chromaticity coordinates show that the phosphor emissions is in the blue region. In an earlier work carried out by Chiu et al. [10, 35] studied luminous efficiency and color tunability of the phosphor which is high and excellent for lighting applications. Thus, Ca₂PO₄Cl:Eu²⁺ (2%) prepared in the present study may show high color tunability and luminescence efficiency and may be suitable for applications in solid state white lighting.

Conclusion

A series of $Ca_{2-X}PO_4CI:xEu^{2+}$ (x = 0.01, 0.015, 0.02, 0.05 and 0.10) phosphors is synthesized by wet chemical method. XRD studies confirm the formation of a crystalline Ca_2PO_4CI matrix. The excitation and emission spectra of the phosphors is broad band due to the $4f^7-4f^65d^1$ transitions of Eu^{2+} . The $Ca_2PO_4CI:2\%Eu^{2+}$ phosphor exhibits very intense emission with a maximum around 452 nm under 385 nm excitation. The emission intensity of $Ca_2PO_4CI:Eu^{2+}$ was found to be higher than commercially available BAM phosphor. CIE 1931 chromaticity coordinates show that the phosphor emissions are in the blue region. It may be used for applications in near-UV phosphor-converted white LED lighting and display devices.

Fig. 6 PL spectra for $Ca_2PO_4Cl:Eu^{2+}$. a and b emission in $Ca_2PO_4Cl:Eu^{2+}$ for 385 nm excitation for 10 and 5 mol.% of Eu^{2+} concentrations, respectively. c and d excitation for 450 nm and 452 nm emission for Eu^{2+} concentrations 10 and 5 mol.%, respectively

1600

1200

800

commercial phosphor BAM

Intensity (a.u.)

Fig. 7 Variation of the emission intensity with Eu²⁺concentration

(d)

(b)

--- CAP --- BAM

Fig. 9 CIE chromatic coordinates of Eu²⁺activated Ca₂PO₄Cl

Declarations

Conflict of interest The present work is not funded by any funding agency.

References

- 1. M. Bredol, U. Kynast, C. Ronda, Designing luminescent materials. Adv. Mater. **3**, 361 (1991)
- 2. S. Shinonoya, *In Phosphor Handbook* (CRC Press, New York, 2007), p. 05
- H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, 353 (1986)
- S. Ekambaram, K.C. Patil, Synthesis and properties of Eu²⁺ activated blue phosphors. J. Alloy Compd. 248, 7 (1997)
- R.P. Rao, D.J. Devine, RE-activated lanthanide phosphate phosphors for PDP applications. J. Lumin. 87, 1260 (2000)
- Z.S. Wu, Y. Dong, J.Q. Jiang, Thermal treatment effects on degradation of BaMgAl₁₀O₁₇:Eu²⁺ phosphor for PDP. Mater. Sci. Eng. B Solid **150**, 151 (2008)

- P.F. Zhu et al., Effect of SiO₂ coating on photoluminescence and thermal stability of BaMgAl₁₀O₁₇: Eu²⁺ under VUV and UV excitation. Opt. Mater. **30**, 930 (2008)
- M. Greenblatt, E. Banks, B. Post, The crystal structures of the spodiosite analogs, Ca₂CrO₄Cl and Ca₂PO₄Cl. Acta Crystallogr. 23, 166 (1967)
- A. Meijerink, G. Blasse, Photoluminescence and thermoluminescence properties of Ca₂PO₄Cl:Eu²⁺. J. Phys. Condens. Matter. 2, 3619 (1990)
- Y.C. Chiu et al., Ca₂PO₄Cl: Eu²⁺: an intense near-ultraviolet converting blue phosphor for white light-emitting diodes. J. Mater. Chem. **20**, 1755 (2010)
- M.E. Hannah et al., A study of blue emitting phosphors, ABPO₄:Eu²⁺ (A=Li, Na, K; B=Ca, Sr, Ba) for UV LEDs. ECS Trans. 41, 19 (2012)
- Z.C. Wu, J.X. Shi, J. Wang, M.L. Gong, Q. Su, A novel blueemitting phosphor LiSrPO₄:Eu²⁺ for white LEDs. J. Solid State Chem. **179**, 2356 (2006)
- S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H.J. Seo, Luminescence and microstructural features of Eu-activated LiBaPO₄ phosphor. Chem. Mater. 23, 1216 (2011)
- J. Sun, X. Zhang, H. Du, Thermally stable blue NaBaPO₄: Eu²⁺ phosphor synthesized by combustion method. Adv. Mater. Res. **295**, 539 (2011)
- D.Y. Kim, I.S. Cho, C.W. Lee, J.H. Noh, K.S. Hong, Preparation and photoluminescence properties of γ-KCaPO₄: Eu²⁺ phosphors for near UV-based white LEDs. Opt. Mater. **33**, 1036 (2011)

- Y.S. Tang, S.F. Hu, C.C. Lin, N.C. Bagkar, R.S. Liu, Thermally stable luminescence of KSrPO₄:Eu²⁺ phosphor for white light UV light-emitting diodes. Appl. Phys. Lett. **90**, 151108 (2007)
- S.H.M. Poort, W. Janssen, G. Blasse, Optical properties of Eu²⁺ activated orthosilicates and orthophosphates. J. Alloy Compd. 260, 93 (1997)
- C. Guo, L. Luan, X. Ding, D. Huang, Luminescent properties of SrMg₂(PO₄)₂:Eu²⁺, Mn²⁺ as a potential phosphor for ultraviolet light-emitting diodes. Appl. Phys. A **91**, 327 (2008)
- Z. Wu, J. Liu, M. Gong, Thermally stable luminescence of SrMg₂(PO₄)₂:Eu²⁺ phosphor for white light NUV light emitting diodes. Chem. Phys. Lett. **466**, 88 (2008)
- W.J. Yang, T.M. Chen, White-light generation and energy transfer in SrZn₂(PO₄)₂:Eu,Mn phosphor for ultraviolet light-emitting diodes. Appl. Phys. Lett. 88, 101903 (2006)
- K.H. Kwon, W.B. Im, H.S. Jang, H.S. Yoo, D.Y. Jeon, Luminescence properties and energy transfer of site-sensitive ca _{6-x-y}Mg_{x-z}(PO₄)₄:Eu_y²⁺,mn_z²⁺ phosphors and their application to near-UV LED-based white LEDs. Inorg. Chem. 48, 11525 (2009)
- 22. Z. Hao, J. Zhang, X. Zheng, X. Sun, Y. Luo, S. Lu, White light emitting diode by using $\alpha\text{-}Ca_2P_2O_7\text{:}Eu^{2+}\alpha\text{-}Ca_2P_2O_7\text{:}Eu^{2+}$, Mn²⁺Mn²⁺ phosphor. Appl. J. Phys. Lett. **90**, 261113 (2007)
- S. Ye, Z.S. Liu, J.G. Wang, X.P. Jing, Luminescent properties of Sr2P2O7: Eu, Mn phosphor under near UV excitation. Mater. Res. Bull. 43, 1057 (2008)
- C.H. Huang, P.J. Wu, J.F. Lee, T.M. Chen, (Ca,Mg,Sr)₉Y(PO₄)₇: Eu²⁺,Mn²⁺: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer. J. Mater. Chem. **21**, 10489 (2011)
- R. Yu, C. Guo, T. Li, Y. Xu, Preparation and luminescence of blue-emitting phosphor Ca₂PO₄Cl:Eu²⁺ for n-UV white LEDs. Curr. Appl. Phys. 13, 880 (2013)

- C.D. Mungmode, D.H. Gahane, S.V. Moharil, Synthesis and photoluminescence of blue emitting Ca₅(PO₄)₃Cl phosphor. Int. J. Lumin. Appl. 5, 24 (2015)
- C.D. Mungmode, D.H. Gahane, S.V. Moharil, On the preparation and photoluminescence of Eu²⁺-doped alkaline-earth apatites M₅(PO₄)₃Cl (M=Ca, Sr, Ba). J. Opt. 48, 49 (2019)
- D.H. Gahane et al., Luminescence of some Eu²⁺ activated bromides. J. Alloy Compd. 484, 660 (2009)
- P. Kristin, The Materials Project, Materials Data on Ca₂PClO₄ by Materials Project. United States: N. p. (2020). https://doi.org/10. 17188/1267727
- E. Banks, M. Greenblatt, B. Post, Crystal structures of synthetic spodiosites. Ca₂VO₄Cl and Ca₂AsO₄Cl. Inorg. Chem. 9, 2259 (1970)
- J. Hao, M. Cocivera, Luminescent characteristics of blue-emitting Sr₂B₅O₉Cl:Eu thin-film phosphors. Appl. Phys. Lett. **79**, 740 (2001)
- M.V. Hoffman, Alkaline earth aluminum fluoride compounds with Eu⁺² activation 1. J. Electrochem. Soc. 18, 0933 (1971)
- M.V. Hoffman, Eu⁺² emission in ternary alkaline earth aluminum fluorides. J. Electrochem. Soc. 119, 0905 (1972)
- D.H. Gahane et al., Luminescence of Eu²⁺ in some iodides. Opt. Mater. 32, 18 (2009)
- Y.C. Chiu et al., Intense blue-emitting Ca₂PO₄Cl:Eu²⁺ phosphor for near-ultraviolet converting white light-emitting diodes. J. Rare Earths 28, 250 (2010)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.